If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2=21.878
We move all terms to the left:
t^2-(21.878)=0
We add all the numbers together, and all the variables
t^2-21.878=0
a = 1; b = 0; c = -21.878;
Δ = b2-4ac
Δ = 02-4·1·(-21.878)
Δ = 87.512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{87.512}}{2*1}=\frac{0-\sqrt{87.512}}{2} =-\frac{\sqrt{}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{87.512}}{2*1}=\frac{0+\sqrt{87.512}}{2} =\frac{\sqrt{}}{2} $
| 2(b-6)=54 | | t^2=109.39/5 | | t^2=91.80/5 | | c=6+1 | | 170-1,000=30(5x-30) | | (1+x)^10=2.87 | | -2|x+4|=-10 | | 2×(6∧2x)-74(6∧x)+72=0 | | -5n-4(2+3n)=-8 | | 15x+14=12(x+5) | | 4x+7=6x^2-8+5 | | 9w=8w+5 | | 25x²+40x+16=0 | | (3x-4)(5x-11)=0 | | -18c−3c+-13c−-16c+-9=9 | | 12x/4x=6 | | 1.5/4x−1=0.4 x+4 | | 90x+30(60)=80x+80(60) | | −25w−7+9=−7 | | y/8+3=-11 | | 10=u/4+2 | | y/8+3=-1 | | 3x+2(6x)=45 | | 3x+2*(6x)=45 | | y/6+3=-1 | | 6x-8+5x=9 | | 7(3+3x)=63 | | T=-1w+20 | | -3=-8+5x | | 727.50=0.75(n)+120 | | (180-x)=2(90-x)+60 | | 13(44)+7c=726 |